Nilpotent groups and unipotent algebraic groups

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computing in Unipotent and Reductive Algebraic Groups

The unipotent groups are an important class of algebraic groups. We show that techniques used to compute with finitely generated nilpotent groups carry over to unipotent groups. We concentrate particularly on the maximal unipotent subgroup of a split reductive group and show how this improves computation in the reductive group itself.

متن کامل

Algebraic Groups I. Unipotent radicals and reductivity

In class, we have proved the important fact that over any field k, a non-solvable connected reductive group containing a 1-dimensional split maximal k-torus is k-isomorphic to SL2 or PGL2. That proof relied on knowing that maximal tori remain maximal after a ground field extension to k, and so relies on Grothendieck’s theorem. But for algebraically closed fields there is no content to Grothendi...

متن کامل

On One Class of Unipotent Subgroups of Semisimple Algebraic Groups

This paper contains a complete proof of a fundamental theorem on the normalizers of unipotent subgroups in semisimple algebraic groups. A similar proof was given later by A. Borel and J. Tits (see also bibliographical remarks in the introduction to their paper). I.I. Pyatetskii–Shapiro suggested me to prove the following theorem which in his opinion would be of interest for the theory of discre...

متن کامل

Nilpotent Groups

The articles [2], [3], [4], [6], [7], [5], [8], [9], [10], and [1] provide the notation and terminology for this paper. For simplicity, we use the following convention: x is a set, G is a group, A, B, H, H1, H2 are subgroups of G, a, b, c are elements of G, F is a finite sequence of elements of the carrier of G, and i, j are elements of N. One can prove the following propositions: (1) ab = a · ...

متن کامل

On Mordell-Lang in Algebraic Groups of Unipotent Rank 1

In the previous ICERM workshop, Tom Scanlon raised the question of whether the (classical, i.e., non-dynamic) Mordell-Lang conjecture remains true in algebraic groups of unipotent rank 1 (with additional hypotheses on the closed subvariety X ). I will discuss some initial work in progress on this question, focusing on the Lang exceptional set of X . Conventions and Basic Definitions For this ta...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Pure and Applied Algebra

سال: 1985

ISSN: 0022-4049

DOI: 10.1016/0022-4049(85)90103-3